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Abstract—The effects of uniform surface blowing on the hypersonic boundary layer with viscous interaction
are investigated analytically and experimentally. For strong and moderate viscous interaction, the heat
transfer on a flat plate and a slender wedge is calculated by use of the local similarity technique to solve the
boundary layer equations and the tangent wedge approximation to determine the inviscid pressure.
The experiments are conducted at Mach numbers of 16 and 20, at unit Reynolds numbers of 2-3 and
1-3 x 10°ft™*, and at the cold wall condition. The analytical and experimental results are in good agreement.
For moderate blowing, it is found that the effects of viscous interaction dominate the flow when the inter-
action is strong and that the effects of blowing become more important as the strength of the viscous
interaction decreases.

NOMENCLATURE x,y, coordinates along and normal to the
. o wall;
4,  defined in equation (18); ) ratio of specific heats;
C,  u*/p T/T* where (*) refers to Eckert 5« boundary-layer displacement thick-
reference enthalpy conditions; ness :
Ch,  Qu/pous(H, — H,); 6, (4 — Dy + 1);
Cp,  specific heat at constant pressure;
g, H/H,or H/H,; " T
H, total enthalpy; 1, T j p dy, transformed coordinate;
K, M6, + dé6*/dx); J29) )
Ky, M0y, 0 dge half-angl le of attack of
M Mach number: b fvlv:t sleatez't angle, angle of attack o
m,  p.U/Pxle, mass injection or blowing u viscosity iy
parameter; , v, 4/p, kinematic viscosity ;
n, exponent of variation of pressure with x
x; determined in equation (16); ¢ J(; Pelt, dx, transformed coordinate;

P, P/D, dimensionless pressure; — . . .
Q.. heat transfer rate at the wall [W/cm?];  © Mz, (/(C/Re.), viscous interaction para-

ter;
Re,, (poleX)tes meter ;
T, temperature; T, shear stress.
U tangential velocity component; .
v, normal velocity component; Subscripts

o,  conditions in the free stream:
e, conditions at the edge of the boundary
layer;
t This work was supported by the U.S. Air Force under w, conditions at the wall;
Contract F04701-69-C-0066. t, stagnation conditions.
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1. INTRODUCTION

THE AERODYNAMIC performance of a reentry
vehicle can be strongly influenced by surface
blowing due to an ablating heat shield. Blowing
tends to increase surface pressure and to decrease
viscous drag and heat transfer. However, at
high altitude the boundary layer on reentry
vehicles can become sufficiently thick that it
develops a strong interaction with the inviscid
flow and thereby induces a large and favorable
pressure gradient. The consequences of this
viscid-inviscid interaction, which is character-
ized by a parameter that compares the viscous
surface pressure to the inviscid surface pressure,
are that the viscous drag and heat transfer are
increased. Since on a reentry vehicle surface
blowing and hypersonic viscous interaction can
occur simultaneously and can produce opposing
effects, it is desirable to have analytical means to
study a hypersonic boundary layer when both
effects are present, but the required theoretical
method must be flexible enough that the effects
of a general blowing distribution for the entire
range of hypersonic interaction (strong and
weak) can be considered. Presently, no exact
or approximate solutions of this dimension
exist.

Existing theories on boundary-layer blowing
have primarily been limited to the special
case of self-similar flows. For the flat plate, the
solution of Emmons and Leigh [1] gives a
complete tabulation of the variation of the
boundary-layer parameters with the blowing
parameter. Further tabulations of self-similar
flows with blowing are presented in [ 2]. Recently,
the effects of external pressure gradient [3] and
surface temperature [4, 5] on boundary layer
flows with blowing were discussed. Exact solu-
tions of nonsimilar cases are few indeed, and
the only case that has been studied in detail is
flow over a flat plate with uniform blowing [6].
There are numerous studies of hypersonic
viscous interaction [7-9]. The combined effects
of mass addition and strong hypersonic inter-
action are discussed in [10, 11]; however, it
appears that the combined effects of surface

blowing and hypersonic interaction have not
been studied for cases in which the magnitude
and distribution of the surface blowing is
arbitrary and the magnitude of the interaction
parameter is arbitrary.

The objective of the present report is to present
an analytical and experimental study of the
hypersonic boundary layer on a wedge and a flat
plate with uniform blowing over the entire range
of interaction parameter. In the experimental
study, heat transfer to the surface of the plate is
measured at flow Mach numbers of 16 and 20,
at unit Reynolds numbers of 2-3 and 1-3 x 10°
ft=1, and at cold wall conditions. The mass
injection rate characterized by the ratio of
injected mass flow to the free stream mass flow
is varied from 1 to 5 per cent. The theoretical
study is conducted by the approximate, local
similarity technique. This technique, which
usually results in a simple analysis [12], is
hampered by the deficiency in tabulated data for
self-similar flows with blowing and a pressure
gradient. However, simple results that accurately
correlate the experimental data are obtained if,
in addition to local similarity, a hypersonic
boundary layer with specific heat ratio close to
unity is assumed.

2. THEORETICAL ANALYSIS

An exact analysis of the hypersonic boundary
layer with mass addition and viscous interaction
could be obtained in principle by numerically
solving the coupled inviscid and viscous equa-
tions. But for the present case, it is expedient to
employ approximate techniques. There are
many approximations that can be used, but the
present problem requires that the approxima-
tions to the inviscid and viscous flows are simple
enough that the interaction between the flows
can be studied. The solution to the inviscid
equation will be approximated by employment
of the strong shock and slender body versions
of the tangent wedge approximation. The
solution to the boundary-layer equations will
be obtained by use of the local similarity tech-
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nique, the hypersonic approximation, and the
numerical solutions of [1].

If a perfect gas, Pr=1, and g~ T are
assumed, the two-dimensional equations for a
hypersonic boundary layer in a transformed
coordinate system are [7]

Jom + o + B — 13 = 28ffe — fef (D)
Gy +fgq = zf(fngg _f.fgq) (2)
where
H, du, 3
=2t
) — ldﬁe 1 =
=T w)
u H
W 3)
> (3)
pv = = ottty /20 (Z—fé +h +f.,§ig)
=t fd' 5—J§ u, dx:
?}-—-\/(25) pdy; = | Peltette dX;
[1] 0
p, =2
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The appropriate boundary conditions are

n—oo: fo-1; g—1
n=0: f,=0; g =Gw;
42 ( )—%
w = —m Z Pedx 4
w= i) @
where

m = pwvw/peoue‘

If the external pressure distribution is given,
the problem is completely determined by equa-

tions (1), (2) and (4). In the present case, the
external pressure is to be obtained from a soiu-
tion of the inviscid equations for flow over
an equivalent body whose ordinate equals
the displacement thickness plus the local body
ordinate. Some of the complexity is eliminated
if it is assumed that the local pressure is given
by a tangent wedge approximation. When this
assumption is made, the full inviscid equations
do not have to be considered. Therefore, for
hypersonic flow, the pressure is

. IV L]yt
pom et (5) ] <)
()

where

do* do*
K - <0b + a’;c")Mm = Kb + Muo—&
If terms of O [(m*Re/M%)t] and O(MZ?) are
neglected, the displacement thickness is

§* = %P;A;)—X \/(Zx JPedx) J(g ~fDdn
b

b
(6}

where y is the flat plate interaction parameter.

It is clear that é* is determined from the
solution of the boundary-layer equations [equa-
tions (1), (2) and (4)] and that these depend on
the pressure [equation (5)], which in turn
depends on the displacement thickness.

So far the development of the local similarity
equations parallels the one presented by Dewey
in [12]. However, the present analysis differs
from Dewey’s in that blowing from a local
similarity point of view was not considered in
[12].

Equations (1), (2} and (4)(6) must be solved
simultaneously. These equations are coupled
ponlinear partial differential equations because
the chosen blowing distribution and range of
interaction parameter do not permit the self-
similar assumption. Therefore, the exact solu-
tion of this problem is difficult even with the
aid of high-speed computers. However, a simple
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analytical solution can be obtained by the
application of the local similarity method.

Before proceeding to the local similarity
solution, it is of interest to discuss the para-
meters of the problems. The equations show that
the parameters are g,, m, M, 6, Re, and v;
however, these are not necessarily independent.
In the case of a flat plate, the parameters are
G Mo, m vand y: When ¥ > 1, then P, ~ %,
&*/x ~ (/ML f, ~ m(M,/Jy® and
Cy ~ [(VX)/M,]>. In the case of a wedge, the
parameters are the same, except that the inter-
action parameter is A = y/K7: When 1> 1,
then P, ~ 4, 6%/x0, ~ A% f, ~ mM2/(A3K2)
and Cy ~ (2K, /M ).

The trend of the blowing effects on a flow with
viscous interaction can be obtained from the
above presentation. When m and M, are
constant, the effects of blowing decrease as the
viscous interaction increases and increase as
the interaction decreases. Thus, on a reentry
vehicle the relative effect of blowing near the
leading edge is less than near the trailing edge.
For blowing to have an 0(1) influence on bound-
ary layer, m must be 0(;*/M?) for a flat plate and
0(A*K2/M?) for a wedge.

In the present local similarity method, f,
is used as the independent variable rather than
the usual . However, the drawback of using f,,
as the independent variable is that the resulting
solution is exact only when f, is zero. But it has
been shown that the local similarity method
predicts heat transfer accurately when the
blowing is not too large [13]. When f, is
large, the local similarity method underestimates
the heat transfer.

Using f,, as the independent variable, equation
(1) becomes

Som + M + BLD (g ﬁ)

= 25 (fnfnfw frdw O
= o f;’—-)l; g—-a»l

Now we shall assume that 2¢& df,/d& is small
such that

f(fw,r; B;2¢ if(‘g)

= foln; f3 B) [ +0 (25 df ”)]

In the leading term f;, the independent vari-
able f,, is a parameter and f is also a parameter
that depends on f,.

Now, if we had a complete tabulation of
fn; £, B the leading term would be deter-
mined and all the boundary-layer parameters
evaluated at the local value of f,, However, we
only have the complete tabulation of the flat
plate solution f(n; f,). Therefore we will make
the hypersonic assumption that

ﬁzO("*' - 1) (10)
7

and for y close to unity, the influence of the
parameter § can be neglected [8].

The question arises as to why an approxi-
mation based on the Catheral et al., solution [6]
for uniform blowing was not developed. One can
answer this question by referring to [11] for the
derivation of the compressible version of the
equations used in [6] and noting that an
additional pressure gradient term whose order
of magnitude is unity and not (y — 1)/y appears
in the compressible equations. This additional
pressure term, which is a result of the variable
viscosity used in the compressible formulation,
cannot be neglected by employing the hyper-
sonic boundary-layer assumption, as was done
with the f term. Hence, there is no one-to-one
correspondence between the incompressible
equations of [6] and the compressible equations
{117, unless the pressure gradient is identically
zero and this is not the case of interest.

Therefore, the leading terms in our local
similarity solution are

f(fw,n B:2¢ “fW) foln: £y

g~ —=g)fon+ g

©

(n
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The variables f and g can be evaluated from [1]
if the local £, is given. However, £, depends on
the variation of P,; therefore, the variation in
P, must be determined.

For the local similarity method, let P, ~ x"
The exponent n is to be evaluated from local
values of the boundary-layer parameters. The
variation of n is

x dP, _ (K*dP,\ (x dK? (12)
TP, dx -~ P, dK% \K? dx
where K is the previously defined hypersonic
similarity parameter. Since P, ~ x", displace-

ment thickness is
2
\/(n+ I)Pe] P

& _(r=1) x
x \ 2 /M,

where

I(f,:4,) = }:(g — 1Yy (14)

It is assumed that [ is a slowly varying function
with x, and this implies that * ~ x1~"/2,

If we restrict the problem to flat surfaces or
wedges (dK,/dx = 0) and employ equation (13)
and the definition of K, it can be shown that

e ——=——(K - K,). (15
The relationship between n and K is determined
by evaluation of dP,/dK? from the tangent
wedge formula [equation (5)] and by use of the
resulting expression with equation (15) in
equation (12). The final equations are

(i K,, K? dp,
= P, dK2
K? dP,

K2\ dP, [, K,
[l ¥ (7,—) aK’ (1 B ’K’ﬂ 16)
P dK2

oo Yo

an

where

yK:Z P41 4P y+1

If K, and K are known then n can be calcu-
lated, and the pressure distribution is known.
For example, K = K, results in n = 0, the zero-
interaction result, and K » 1 results in the
strong-interaction self-similar solution result.

The parameter K is related to P, and the
boundary-layer solution by

(t—n?@ -1y
e e O

Equation (19) relates K, P, and 1 + n to the
boundary solution I, which depends on g,
and f,.

The remaining relationship between the
boundary-layer solution and the external

pressure is
mM%2 Nl +n
X V\2P. J

This equation relates £, to n and P,.

The procedure for obtaining a solution is
as follows. We are given m, y, M2, g,, and 6,
A value of K is assumed. P, is calculated from
equation (5), and n is calculated from equations
(16)18). The value of f, is determined from
equation (20). Then I(f,, g,) is obtained from
the tabulation in [1], and K,,, is calculated
from equation (19). If K, , does not agree with
K, the iteration is repeated using K,,, until
satisfactory convergence is obtained. This itera-
tion procedure can be easily executed with the
aid of a desk computer.

If n, P, and f, are known, the boundary-layer
parameters can be determined from

Jo=

(20)

w0
Pty Puti(H, ~ H,)
1
R P ANE

Before concluding this section, it is appro-
priate to comment on the parameters that
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characterize the accuracy of the solution. The
first parameter is 2¢&(d f,,/d&), and the solution is
accurate to 0[2¢(d £,,/d&)]. This implies, as can
be deduced from the equations, that the accuracy
increases as the hypersonic interaction increases
or as m decreases. The second parameter is j,
and the solution is accurate to 0(f) or to
0[(y ~ 1)/y]. Hence, as m increases and 1,,/(p,u?)
decreases, the solution is reasonably accurate
until 7, /(pul) is O(B,,/m [S] At this point,
further decreases in t,/(p %) are not allowed
unless the effect of § on the solution is con-
sidered. Hence, it is inappropriate to discuss the
“blow-off”” question using the present approxi-
mation. Furthermore, it was shown in [4] and
[5] that “blow-off” cannot occur when m, f and
g, are all finite.

3. EXPERIMENTS

Heat transfer to a porous flat plate with mass
injected through the surface was measured at
flow Mach numbers M of 16 and 20 and unit
Reynolds numbers of 23 and 1-3 x 10° ft™*.
The mass injection rate parameter m was varied
from 09 to 43 per cent, while angle of attack
for the surface of the plate ranged from 0 to
16 deg. The experiments were carried out in the
Aerospace hypersonic shock tunnel, which is a
contoured nozzle facility designed for M, = 20
at reservoir conditions of 200 atm and 2000 °K.
The details of the model, instrumentation and
testing techniques are as follows.

The model consists of an aluminum box, the
top surface of which is a porous plate. A 30-deg
wedge with a 0003 in. radius of curvature
provides the leading edge of the plate, the
surface dimensions of which are 8 x 8} in.
A -in. thick stainless steel plate with a 2-p
porosity provides the porous surface of the
model. The porous section begins about 3 in.
aft of the leading edge. The injected gas, N,
in this case, is introduced into the plenum and
controlled by an external flow metering system.

Flow uniformity of the gas injected from the
surface was assured by observation of the flow
variations with a hot wire anemometer traversed

across the porous surface of the model before
the test.

Thin platinum film resistance thermometers,
applied to Pyrex disk substrate and cemented
with the film surface flush with the porous
surface, provided the heat-transfer instrumenta-
tion. The output signal from the resistance
thermometer reflecting the surface temperature
history was transformed by analog circuits to
the heat-transfer rate and observed directly
on oscilloscopes. The precision of the measure-
ments is a function of the accuracy of the thin-
film gage calibration and the precision with
which the signals can be measured on the
oscilloscope traces. From these considerations,
an accuracy between 10 and 15 per cent is
expected. Since the effects of blowing should
be much larger, this accuracy is quite adequate.

In addition to the heating rates, the tunnel
flow parameters are obtained from a measure-
ment of the reflected shock pressure and Mach
number in the shock tube and the pitot pressure
in the tunnel. These data are plotted in Figs. 1
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FiG. 1. Flat plate heat-transfer rate with mass injection,
viscous interaction.
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and 2 in the form of Stanton number
Cq = Q/ptig(H, — H,) as a function of
x = M2./(C/Re,) for the case of a flat plate at
zero angle of attack (Fig. 1) and Cg/|83] vs.
x/M2 0% for the case of a wedge (Fig. 2) with
half angle 8, (or plate at angle of attack 4,).
Included in the two graphs are Cheng’s [8]
viscous interaction predictions for no blowing
for a flat plate and Mirels and Ellinwood’s [9]
predictions for a wedge of semivertex angle ;.

4. RESULTS AND DISCUSSION

In general, the experimental and analytical
results, given in Figs. 1 and 2, are in good agree-
ment. For the wedge, the best agreement
occurs when the interaction is strong and the
amount of blowing is small.

The results show that mass injection decreases
the heat transfer rate below the nonblowing
value. For a fixed value of m, these results show
that the effects of mass injection decrease as the
hypersonic viscous interaction. increases. This

conclusion was anticipated in a previous dis-
cussion of the flo' parameters. This trend

implies that with increasing viscous interaction
the effect of pressure on heat transfer tends to
override the effect of blowing. The consequence
of this on slender, sharp nose, reentry vehicles
is to minimize the effect of blowing near the
nose as compared with that toward the aft end.
In order for blowing to have an 0(1) effect on
the boundary layer, it is required that
m ~ O(3/M3) for flat plates and that

m ~ (A*K2)/M3 for wedges.
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COUCHE LIMITE HYPERSONIQUE SUR UN DIEDRE AVEC UNE ADDITION
UNIFORME DE MASSE ET UNE INTERACTION VISQUEUSE.

Résumé—On étudie analytiquement et expérimentalement les effets de soufflage superficiel uniforme
sur une couche limite hypersonique avec une interaction visqueuse.

Pour une interaction visqueuse forte ou modérée, le transfert thermique sur une plaque plane et sur un
coin effilé est calculé en utilisant la technique de similitude locale pour résoudre les équations de couche
limite et Papproximation du diédre tangent pour déterminer la pression lorsqu’il n'y a pas viscosité. Des
expériences sont réalisées & des nombres de Mach de 16 et 20, et des nombres unitaires de Reynolds de
2,3et1,3. 10° ft 71, et pour des conditions de paroi froide. Les résultats expérimentaux et théoriques sont
en bon accord. Pour un soufflage modéré, on constate que les effets d’interaction visqueuse déterminent
P’écoulement quand I'interaction est forte et que les effets de soufflage deviennent d’autant plus importants

que I’intensité de I'interaction visqueuse décroit.

DIE HYPERSONISCHE GRENZSCHICHT AN EINEM KEIL MIT GLEICHMASSIGER
MASSENZUFUHR UND ZAHIGKEITSEINFLUSS
Zusammenfassung—Die Auswirkungen gleichmissiger Oberflichenausblasung auf die hypersonische
Grenzschicht mit zahigkeitseinfluss werden analytisch und experimentell untersucht. Fiir starken und
missigen Zihigkeitseinfluss wird der Wirmetransport an einer ebenen Platte und einem schlanken Keil
unter Benutzung der drtlichen Ahnlichkeit, um die Grenzschichtgleichungen zu 16sen, und der “tangent-
wedge”—Nadherung berechnet, um den statischen Druck zu bestimmen. Die Experimente werden bei
Mach-Zahlen von 16 und 20 und bei auf die Lingeneiheit bezogenen Reynolds-Zahlen von 7,55 und
427 x 10° m~! und bei kalter Wand ausgefiihrt. Die analytischen und experimentellen Ergebnisse
stimmen gut iiberein. Fiir méssiges Ausblasen findet man, dass die Zahigkeitswirkungen iiberwiegen,
wenn diese stark sind, und dass die Auswirkungen des Ausblasens entscheidend werden, sobald die Stirke
des Zahigkeitseinflusses abnimmt.

CBEPX3BYKOBO!l MOTPAHUYHBINA CJION HA HJIUHE IIPU
OJHOPOJJHOM BOVBE MACCHI 1 BA3BKOM B3AUMOJENCTBNU

AnnoTanus—BnuAauue OJHOPOJZHOTO MOBEPXHOCTHOTO BAYBAa HA CBEPX3BYKOBOW IOTpaHm-
YHHH CJOI NpU BASKOM B3aMMOJEHCTBUM UCCIERYETCA AHAJUTHYECKHA U BKCIEPUMEHTAILHO.
IIpu cCHUIBHHIX M CPeHMX BABKUX B3aHMOJIEHCTBMAX TeINIONEPEHOC HA INIOCKON miacTHHEe W
TOHKOM KJIKHE PACCYMTHIBAETCA METONIOM JIOKAJbHOH ABTOMOJENBLHOCTH, AJIA TOTO UYTOOH
PEINUTs YPABHEHUA IHOTPAHMYHOIO CJOA, M € IIOMOIIBI0 ANNPUKCUMALMH TAHTE€HIHAJIbHOTO
KJMHA [JA ONpEeMleIeHUA HEeBA3KOr0 JABJIEHMA. DKCIEePUMEHTHl IPOBOMIJIUCH NpH HHCIaX
Maxa ot 16 mo 20, uncnax Peitnonpaca ot 2.3 mo 1.3 x 105 dyr-! u xonopuoit crenxe. Peaynn-
TATHl AHAJINTHYECKNE U DKCIEPUMEHTAJIbHEe X0powo coraacyorca. Ilpn yMmepennanix BayBax
Haii(eHO, YTO BIMAHKE BABKOrO B3auMOeliCTBINA JOMUHMPYET, eCIU B3aNMOIeHCTBIE CUIIbHOE,
a 5QQdeKTH BIYBA CTAHOBATCA (oJlee B3HAYUTEIbHBLIMM 10 Mepe OCiIabjeHuA BA3KOTO
B3aMMOJeNCTBUA.



